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The role of plastic deformation of rough surfaces
in the size-dependent hardness
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Abstract

In this study, we propose a bearing ratio model for nanoindentation of rough surfaces. During an indentation test, the work done

by an applied indentation load contains the bulk work and the surface work. The surface work causes plastic deformation of an

indented rough surface and thus dissipates energy, which is necessary to form an impression on a solid. The energy dissipation

occurring at the indented surface is among the factors that cause the Indentation Size Effect (ISE) at the micro/nanometer scales. In

particular, the surface effect predominates when the indentation depth is shallow. Good agreement is found between the theoretical

and experimental results of the size-dependent hardness, indicating that the surface effect plays an important role in size-dependent

hardness.

� 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Since the beginning of the last century, indentation

tests have been widely used to characterize the me-

chanical properties of materials [1,2]. The development
of microindentation [3,4] and instrumented nanoinden-

tation techniques [5–7] enables us to investigate the

material properties at the micro/nanometer scales. There

are many reports in the literature on how to extract

information on the material properties from the instru-

mented indentation tests [8–12]. At the micro/nanometer

scales, the hardness depends on the indentation depth or

load, exhibiting the well-known Indentation Size Effect
(ISE). A decrease in the hardness with increasing in-

dentation depth or load has been observed in numerous

micro/nanoindentation tests on various materials such

as metals, diamond-like carbon, polymers, ceramics, etc.

[3,5,13–20], which may be called the normal ISE. The

inverse ISE has also been reported, in which the hard-

ness increases with increasing indentation depth or load

[21–24]. Although there are many mechanisms causing
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the ISE [25–27], the dislocation plasticity theory and the

surface effects are two major mechanisms of interest.

The ISE in crystalline materials can be explained on

the basis of the concept of geometrically necessary dis-

locations [28]. In 1993, Stelmashenko et al. [29] studied
the ISE on the (1 0 0), (1 1 0) and (1 1 1) surfaces of Mo

and W single crystals and proposed a reasonable ex-

planation in terms of the local dislocation hardening due

to geometrically necessary dislocations. For W single

crystals, when the indentation depth is less than 500 nm,

the (1 0 0) nanohardness is the highest, the (1 1 0)

nanohardness is in the middle and the (1 1 1) nanoh-

ardness is the lowest. The hardness, H , is given by

H ¼ Aalb q0

�
þ cot b

bd

�1=2

; ð1Þ

where the constant A is the ratio of the average normal

pressure to the flow stress and is about 3 for metals and

1.5 for glass [30–32], the constant a is normally taken to

be 1/3, l is the shear modulus, b is the Burger�s vector, q0

is the background dislocation density or a dislocation

density appropriate to a representative strain, cot b is

the wedge shape of an indenter (b ¼ 136� for a Vickers
indenter), and d is the diagonal of the impression.
ll rights reserved.
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Stelmashenko et al. [29] let the value of Aa vary from 2

to 3 for different crystalline surfaces to explain the ob-

served change in hardness with the crystalline orienta-

tion. Eq. (1) is fundamental to understanding ISE

hardness based on the dislocation theory. In 2002,
Gerberich et al. [33] found that, for W single crystals,

Eq. (1) with a reasonable value of Aa � 1:5 fits satis-

factorily with the data for Vickers tips [29] and with the

other ISE data for spherical tips ranging from 85 to 5000

nm in radius [34,35].

In 1995, Ma and Clark [17] suggested that the density

of geometrically necessary dislocations, qG, is related to

the strain gradient by compatibility requirements. They
estimated the strain gradient by the average shear strain,

c, underneath the impression divided by the impression

diameter, D, i.e., qG � 4c=ðbDÞ. Following Taylor�s
dislocation work hardening theory that the flow stress

is proportional to the square root of the total dislocation

density, Ma and Clark divided the total dislocation

density into the geometrically necessary disloca-

tion density, qG, and the statistically stored dislocation
density, qS. Then, Ma and Clark [17] proposed a sim-

plified strain gradient plasticity model for the size-de-

pendent hardness. When replacing q0 and cot b=ðbdÞ in
Eq. (1) by qS and 4c=ðbDÞ, respectively, one should have

the size-dependent hardness proposed by Ma and Clark

[17]. The simplified strain gradient plasticity model fits

excellently with the experimentally measured data of

silver single crystals indented with a Berkovich indenter.
In addition to the simplified strain gradient plasticity

model, Ma and Clark [17] also developed a geometrical

scaling model for the ISE. They partitioned the applied

indentation force into the force on the flat surfaces and

the force over the edges and derived the size-dependent

hardness for various indentation tips:

H ¼ H0 þ b̂b
8
ffiffiffi
3

p

3D2
1

�"
þ

ffiffiffi
3

p �
D� d̂

#

for Berkovich indenters; ð2aÞ

H ¼ H0 þ b̂b
4

D2
1

��
þ

ffiffiffi
2

p �
D� d̂

�
for Vickers indenters; ð2bÞ

H ¼ H0 þ b̂b
4

D
for conical and hemispherical indenters; ð2cÞ

where H0 represents the macroscopic hardness and all

constants,H0, b̂b and d̂d, are determined by the best fit to the

experimental data. Clearly, the mathematic format of

Eqs. (2a)–(2c) is completely different from themathematic
format of Eq. (1). However, the fitting of Eq. (2a) to the

size-dependent hardness of silver is as perfect as the fitting

of the simplified strain gradient plasticity model, thereby

indicating that a set of experimental data can be almost

equally well fitted with different equations.
Nix and Gao [25] clearly showed that the ISE for

crystalline materials could be modeled using the concept

of geometrically necessary dislocations and Taylor�s
dislocation work hardening theory. For a geometric self-

similar indenter, the size-dependent hardness, in terms
of the indentation depth, h, is given by

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�=h

p
; ð3Þ

where h� is a characteristic length that depends on the
indenter shape, Burger�s vector and the statistically

stored dislocation density. In practice, H0 and h� are

treated as fitting parameters. Eq. (3) fits the depth-

dependent hardness of (1 1 1) single crystal Cu, cold

worked polycrystalline Cu, (1 0 0) and (1 1 0) single

crystal Ag well when the data for depths less than 100

nm are excluded because the shape of the indenter is not

self similar at small indentation depths. Using this
model, Nix and Gao developed a law for strain gradient

plasticity, which became the theoretical basis of the

mechanism-based strain gradient plasticity.

Swadener et al. [36] extended Nix and Gao�s model to

the case of spherical indenters. Their analytic results

indicate that, for a spherical indenter, the hardness is

not dependent on depth, but depends on the radius of

the indenter, R. Correspondingly replacing h� and h in
Eq. (3) with R� and R gives the radius-dependent hard-

ness, H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R�=R

p
, for spherical indenters. In

addition, Swadener et al. [36] studied the correlation of

the ISE determined with spherical and pyramidal ind-

enters by equaling the geometrically necessary disloca-

tions required by each indenter, which yields R� ¼ 5:2h�.
Xue et al. [37] also studied the ISE for spherical inden-

ters by using the theory of mechanism-based strain
gradient plasticity. Their results show that, for a given

contact radius, the calculated hardness increases as the

tip radius decreases. For a given tip radius, however, the

calculated hardness increases as the contact radius in-

creases, exhibiting inverse ISE, which differs from the

results obtained by Swadener et al. [36].

As more and more experimental results are reported,

researchers find that Eq. (3) cannot accurately fit all the
experimental results. Therefore, Eq. (3) has been modi-

fied within the scheme of dislocation plasticity theory.

Swadener et al. [38] added a contact-depth-independent

constant, H1, to the right-hand term of Eq. (3), i.e.,

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�=h

p
þ H1, where H1 is a work hardening

component representing increases in hardness from the

onset of yielding to an effective strain. The modified

equation was then used to study the ISE in a (1 0 0)
NaCl single crystal and a (1 0 0) LiF single crystal. El-

mustafa and Stone [39,40] studied the ISE using com-

bined micro/nanoindentation tests on highly pure Al

and alpha brass samples. They added a contact-depth-

independent constant, Hf , which is similar to the work

hardening component, H1, to the right-hand term of Eq.

(3). The hardness, Hf , represents the contribution of
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hardening mechanisms other than dislocations. When

using the modified equation to fit the experimental data,

they found that, for depths shallower than 150 nm, the

slope decreased abruptly by a factor of 10 in comparison

with the microhardness and deep nanoindentation data.
Qiu et al. [41] considered the intrinsic lattice resistance,

r0, which varies with the lattice orientation, and modi-

fied Eq. (3) to

H ¼ 3r0 þ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3r0=H0Þ2 þ h�=h

q
¼ H �

1 þ H �
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h��=h

p
;

where H �
0 ¼ H0=ð1� 3r0=H0Þ, H �

1 ¼ 3r0, and h�� ¼ h�=
ð1� 3r0=H0Þ2 are all depth-independent. The modified

formula has a similar form as that proposed by Swa-
dener et al. [38] and Elmustafa and Stone [39,40]. With

the modified model, Qiu et al. [41] explained the de-

pendence of ISE on the crystalline orientation, which

was observed in W crystals [29]. In summary, the above

discussions indicate that different models may result in

an apparently identical ISE formula.

There is much less theoretical work on the mecha-

nisms of the ISE of polymers in the literature. Lam and
Chong [42], by following the molecular theory of yield

for glassy polymers, proposed a size-dependent hardness

for polymers

H ¼ H0 1

�
þ

ffiffiffiffiffiffiffiffiffi
h�=h

p �
: ð4Þ

Eq. (4) was verified by experimental results on epoxy

resin and polycrabonate [43].

Another mechanism of the ISE is the surface effect.

An illustrative example of the surface effect may be at-

tributed to an oxidation or work-hardened layer. An

oxidation layer, thick or thin, always exists at the sur-

face of a metallic sample in the conventional testing

environment and a work-hardened layer at the surface
of a sample can be formed during the sample prepara-

tion, especially by mechanical machining and mechani-

cal polishing. The oxidation layer or the work-hardened

layer could be much harder than the bulk material so

that the sample is harder when the indentation depth is

shallow because the indenter is mainly in contact with

the oxidation layer or the work-hardened layer [44]. Liu

and Ngan [45] observed that at the same contact depth,
a mechanically polished (1 1 1) Cu crystal is harder than

an electromechanically polished (1 1 1) Cu crystal. They

attributed this phenomenon to a work-hardened thin

layer formed on the mechanically polished sample.

Gerberich et al. [33] proposed that the ISE should be

linked to a ratio between the energy of the newly created

surface and the plastic strain energy dissipation. They

estimated the surface work and the volume work asso-
ciated with the plastic deformation during an indenta-

tion test. There are a number of possible contributions

to the indentation surface work as follows: (1) creating a
new surface associated with straining material outside

the contact, (2) creating a surface by fracture of oxide, if

any, or by fracture of the metal/oxide interface, (3) ad-

hesion between the indenter-tip and the indented mate-

rial, and (4) surface stress deformation work outside the
area of contact. Their analysis indicates that, in the first-

order approximation, the total surface work is given by

the product of the contact area and the surface energy.

They found that the contact-surface-to-plastic-volume

ratio was nearly constant for a range of shallow depths

and the ratio of the surface work to the plastic volume

work decreases rapidly with increasing depth of pene-

tration, thereby leading to the ISE. They gave the size-
dependent hardness,

H ffi rf

ðS=V Þ2=3
� 1

ð3hRÞ1=3
; ð5Þ

where rf is an appropriate flow stress and S=V denotes

the ratio of the contact surface to the plastic volume. Eq.
(5) fits the size-dependent data in the (1 0 0) W, (1 0 0)

Fe–3 wt%Si, (1 0 0) Au, and (1 0 0) Al single crystals for

a large range of tip radii from 70 to 20,000 nm. It may be

interesting to note that their experimental results with

spherical tips reveal the normal ISE, which differs from

the theoretical predictions by Swadener et al. [38] and

Xue et al. [37], thereby indicating that other mechanisms

rather than strain gradient plasticity may predominate
in Gerberich et al.�s [33] tests.

Zhang and Xu [26] studied the surface effect on

nanoindentation and introduced an apparent surface

stress that represents the energy dissipated per unit area

of a solid surface in a nanoindentation test. They ana-

lyzed the work done by an applied indentation load that

contains both bulk and surface work. Surface work,

which is related to the apparent surface stress and the
size and geometry of an indenter tip, is necessary in the

deformation of a solid surface. The size-dependent

hardness is given by

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�

h

r
þ g

f
h

for crystalline materials; ð6aÞ

H ¼ H0

 
1þ

ffiffiffiffiffi
h�

h

r !
þ g

f
h

for polymeric materials;

ð6bÞ

where g is a numerical factor of 2
ffiffiffi
3

p
, 1.1827 and 2.2406

for Northstar, Berkovich, and Vickers tips, respectively,

and f denotes the apparent surface stress. The second

term on the right-hand side of Eq. (6), gf =h, represents
the surface contribution to the ISE, while the termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h�=h
p

� 1 or
ffiffiffiffiffiffiffiffiffi
h�=h

p
stands for the bulk contribu-

tion to the ISE. Without including the bulk contribu-

tion, Zhang and Xu [26] fit their experimental data and

the experimental data reported in the literature for
metals, diamond-like carbon, polymers, and ceramics
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with H ¼ H0 þ gf =h. Good agreement was found be-

tween theoretical first-order approximations and em-

pirical data on depth-dependent hardness, indicating

that the apparent surface stress plays an important role

in depth-dependent hardness. This good fit is surprising
because depth-dependent hardness also fits well with the

formula, H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�=h

p
, for metals and with the

formula, H ¼ H0ð1þ
ffiffiffiffiffiffiffiffiffi
h�=h

p
Þ, for polymers. This means

that the experimental data on depth-dependent hardness

can fit with different formulas derived from different

models. Ma and Clark [17] have found, as mentioned

above, the similar phenomenon that a set of experi-

mental data could be fitted with different formulas. In
addition, Zhang and Xu [26] introduced a critical in-

dentation depth, hc. The surface deformation predomi-

nates if the indentation depth is shallower than the

critical depth, while the bulk deformation predominates

when the indentation depth is deeper than the critical

depth. However, the apparent surface stress extracted

from the nanoindentation test is about two or three

orders higher in magnitude than the surface energy of
the same material. Zhang and Xu [26] attributed the

high values of apparent surface stress to friction and/or

plastic deformation occurring at the contact surface. But

they did not explore the mechanism of the high apparent

surface stress.

Actually, many researchers [22,46–52] have studied

the surface term in Eq. (6) without including the bulk

contribution, i.e., the hardness formula of
H ¼ H0 þ C=h, where C is a constant. Bernhardt [47]

and Fr€oohlich et al. [48] related the surface term to the

energy consumed in creating new surfaces of indentation

facets and microcracks. Hirao and Tomozawa [49] tried

to correlate this term to the surface energy and found

that the evaluated surface energies of silica, borosilicate,

and soda-lime ceramics were extremely large, with the

magnitude on the order of 104 J/m2. Li et al. [22] at-
tributed the surface term to frictional and elastic con-

tributions. Swain and Witting [50] believed that the

surface term was created by the median cracks under the

Knoop indentations. By numerical simulations, Bobji

and Biswas [51] demonstrated that surface roughness

has a substantial influence on nanohardness, irrespective

of whether the bulk and surface mechanical properties

are the same. Gao and Fan [52] connected the surface
term to the plastic energy dissipated at an indented

rough surface. Following the elastic–plastic model for

the contact of rough surfaces proposed by Chang et al.

[53], Gao and Fan [52] conducted a plastic deformation

analysis of asperities of a rough surface with the basic

assumptions in Chang et al.�s model that asperities are

spherical near their summits with all having the same

radius, Rasp, and that there is no deformation in the bulk
and no interaction between asperities such that only

individual asperities deform during contact. Using an

exponential distribution of summits, Gao and Fan [52]
estimated the apparent surface energy, which they called

the dissipation energy per contact area, ec:

ec ¼ pp0gRasprð2rþ xcÞ expð�xc=rÞ; ð7Þ
where p0 is the flow pressure, g is the asperity density, r
is the standard deviation of the summit distribution, and

-c ¼ Raspðpp0=2EÞ2 is the critical interference with E
being Young�s modulus. Since so many parameters are

involved in ec, it must be very challenging to verify Eq.
(7) experimentally. Nevertheless, the merit of Eq. (7) lies

in that it links the apparent surface energy to the plastic

work required to deform a rough surface.

In the present work, we develop a nanomechanics

model to predict the apparent surface stress of a rough

indented surface. Chang et al.�s model [53] is appropriate

for a range of moderately loaded contacts where the

asperity deformations are primarily elastic but where
there is also an appreciable percentage of asperities be-

yond their elastic limit. We believe, however, that, dur-

ing a nanoindentation test, asperities on an indented

rough surface must all be plastically deformed. The

peaks of the asperities flow plastically down to fill up the

valleys of the rough indented surface such that the re-

sidual contact surface will become microscopically flat

and insensitive to the original roughness, thereby caus-
ing the pull-out force to be insensitive to the original

roughness. Our nanomechanics model is based on severe

plastic deformation and a directly measurable parame-

ter, the bearing ratio, of a rough surface. The experi-

mental results of instrumented nanoindentation tests on

metallic and polymeric samples with different rough

surfaces verify our nanomechanics model.
2. Analysis

2.1. Hardness

Following Zhang and Xu�s approach [26], we analyze

the work done by an applied load in a nanoindentation

test. During an infinitesimal increase in the indentation
depth, dh, under an indentation load, P , the work done

by the indentation load,Pdh, can be divided into the

bulk work, dEb, causing deformation of the bulk mate-

rial and the dissipated energy, dEs, at the surface layer of

the indented sample, i.e.,

Pdh ¼ dEb þ dEs: ð8Þ
The elastic deformation energy in the system is released

during the unloading process, so no term for the elastic

energy change is included in Eq. (8). The surface dissi-
pation energy can be further divided into two terms

dEs ¼ ecdAp þ fsdAc; ð9Þ
where Ap and Ac are the contact project area and the
contact area, respectively, as shown in Fig. 1, fs is the
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Fig. 1. A schematic of nanoindentation processing, where Ap, Ac, hf ,
and Aðhf Þ denote the project area, contact area, residual depth and

residual area, respectively. An indented material can be divided into

the surface layer and the bulk region. The rough surface layer must be

deformed prior to deforming the underneath bulk. The surface de-

formation makes the residual contact surface flat.
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thermodynamic surface stress and ec is the dissipation

energy per contact project area due to the plastic de-

formation occurring at the indented surface, which is

also called the surface contact dissipation energy den-
sity. In addition to the surface energy term, fsdAc, which

is consistent with the analysis of Gerberich et al. [33],

Eq. (9) includes the surface plastic work, ecdAp. Note

that Gao and Fan [52] defined ec as the dissipation en-

ergy per contact area rather than per contact project

area. We believe that the contact project area possesses

the original surface morphology and the contact area

has a different surface morphology due to plastic de-
formation. Eq. (9) shows that the surface dissipation

energy is generated by increases in both the surface en-

ergy and the surface plastic work.

For a material with a perfectly flat surface, the bulk

energy can be easily calculated by the hardness without

including any surface effects, because the hardness is

usually defined as the mean pressure on the indentation-

projected contact area. For example, if the hardness
expression proposed by Nix and Gao [25] is used, the

bulk energy can be obtained by

dEb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�

h

r
H0Apdh: ð10Þ

Substituting Eqs. (9) and (10) into Eq. (8) yields

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�

h

r
H0Ap þ ec

dAp

dh
þ fs

dAc

dh
: ð11Þ

Then, dividing the two sides of Eq. (11) by Ap and taking

into account the indenter tip geometry, we have the

hardness

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�

h

r
þ F

h
; ð12Þ

with
F ¼ 2ec þ gfs; ð13Þ

where g is the geometric constant, as described above,

and the factor 2 is derived from the geometric self-

similarity of the indenter tips. Eq. (12) is identical to
Eq. (6a) if we define the apparent surface stress as

f ¼ 2ec=g þ fs: ð14Þ
Similarly, we have the hardness given by Eq. (6b) for

polymers with the apparent surface stress defined by Eq.

(14). In general, the apparent surface stress should be a

function of the indentation depth. To demonstrate the

surface effect, we simply take it as a constant in the first

step approximation. Thus, for a given indenter shape

and tested material, F is a constant and independent of

the indentation depth, which allows us to extract its
value from the nanoindentation tests.
2.2. The dissipation energy per contact project area, ec,
for a rough surface

In 1933, Abbott and Firestone [54] proposed a sur-

face microgeometry model for plastic contact in which

the deformation of a rough surface against a rigid flat
plate is equivalent to the truncation of the undeformed

rough surface at its intersection with the flat plate. The

area of contact is simply the geometrical intersection of

the flat plate with the original profile of the rough sur-

face, and the pressure over the contact is the flow

pressure. The surface microgeometry model, however,

did not taken the volume conservation of plastic de-

formation into account. In 1972, Pullen and Williason
[55] developed a plastic contact model of rough surfaces,

which is called the PW model in the present work. The

PW model is based on three physical observations: that

the total volume of the material is not changed by plastic

deformation; that the mean indentation pressure is a

well-defined material constant applicable to the whole

range of likely asperity shapes; and that the displaced

material reappears as a uniform rise in the non-con-
tacting surface. Our nanomechanics model is a direct

consequence and further development of the PW model.

We believe that, in a nanoindentation test, asperities on

an indented rough surface must all be plastically de-

formed. In the nanomechanics model, we assume that

perfect plasticity is applied to all asperities with the same

flow pressure. Furthermore, the contact project area is

assumed to be much larger than the size of each indi-
vidual asperity and the material volume does not change

during the plastic deformation. Thus, the peaks of the

asperities flow plastically down to fill up the valleys of

the rough indented surface, from which the surface

plastic work per project area is defined as

ec ¼ p0Vp with Vp ¼
Z dmax

tpðdÞdd; ð15Þ



62 T.-Y. Zhang et al. / Acta Materialia 52 (2004) 57–68
where p0 is the plastic flow pressure of the material

and tp is the bearing ratio, which is defined as the to-

tal interception area when a horizontal plane slices

through a rough surface parallel to the mean plane.

Experimentally, the bearing ratio is determined by tp ¼
ð1=AÞ

P
i¼1 ai, where ai is the area of individual asperities

at height d and A is the nominal surface area examined.

The integration limits, dm, dmin and dmax, in Eq. (15)

denote the mean, minimum and the maximum heights,

respectively, as illustrated in Fig. 2. Vp represents the

average peak volume of asperities per unit nominal

surface area that is moved to fill up the valleys. Since the

present model is based on the bearing ratio, we may call
it the bearing ratio model for nanoindentation of rough

surfaces. Comparing Eq. (15) with Eq. (7) shows the

obvious difference in the surface plastic work per project

area derived from the two models.

2.3. Thermodynamic surface stress

In the present work, the thermodynamic surface
stress, fs, is estimated by the work of adhesion, c, i.e.,
fs � c. The nanoindentaion tests reveal the pull-off

phenomenon. From the pull-off force, Fp, we can de-

termine the work of adhesion, c ¼ c1 þ c2 � c12, where
c1 and c2 are the surface energies of the indenter tip and

the indented material, respectively, and c12 is the inter-

face energy between the indenter tip and the indented

material. The atomic interaction of the surface adhesion
is usually described by the Lennard–Jones potential. In

an elastic–plastic sample, the pull-off force is directly

proportional to the residual contact area, i.e., Fp ¼
�KAf , when the DMT model [56] is adopted, where Af

denotes the residual contact area and K is a propor-

tionality constant in units of N/m2. If we take the

Dugdale approximation for the surface force potential,
Fig. 2. A typical bearing ratio curve, where Vp and Vv denote the

volumes of the peaks and valleys of a rough surface and Vp ¼ Vv.
During the nanoindentation tests, the material in the peak volume

plastically flows to fill up the volume of valleys.
we have K ¼ 1:03c=z0, where z0 is the equilibrium sep-

aration [57]. Therefore, the work of adhesion is deter-

mined from

c ¼ � Fpz0
1:03Af

: ð16Þ

In the nanoindentation tests based on Oliver and Pharr�s
method [6], the project contact area used to determine
the hardness is calibrated as a function of the contact

depth before unloading. The calibrated area function is

adopted here to calculate the residual contact area from

the residual depth, hf , as shown in Fig. 1. The residual

depth can be directly measured during the tests.
3. Experiments

To demonstrate the roughness effect in the depth-

dependent hardness and to verify the proposed bearing

ratio model, nanoindentation tests were conducted on

63Sn–37Pb alloys and Teflon with different surface

roughnesses.

The Sn–Pb alloys were melted at 200 �C and then

poured on a clean four-inch silicon wafer, which func-
tioned as a solid holder. The Sn–Pb sample surface was

ground with sand paper down to 600-grit to make the

sample surface parallel to the bottom of the silicon

holder. Then, the sample surface was further mechani-

cally polished with 3 lm alumina suspension. After that,

a small piece of sample (10 mm� 5 mm� 3 mm) was cut

from the big sample. The rest of the big sample was

further mechanically polished with 1 lm alumina sus-
pension. After the polishing, two small pieces of the

samples (10 mm� 5 mm� 3 mm) were cut away. One of

the two samples was further polished for more than 30

min using 0.05 lm colloidal Alumina on a GAMMA

micropolishR, followed by supersonic cleaning in etha-

nol and distilled water. To remove any potential residual

stresses caused by the mechanical polishing, the three

Sn–Pb samples were annealed at 150 �C for 60 min.
After the annealing, X-ray diffraction (Model PW1825,

Philips) was used to measure the potential residual

stresses on the Sn–Pb sample surfaces.

Three samples were cut from a big piece of Teflon

(PTFE) polymer. The three samples were polished for 60

min with the sand paper with 9, 3, and 0.3 lm alumina,

respectively. All the Teflon samples were annealed at

130 �C for 60min to remove any potential surface residual
stresses induced by the mechanical polishing. Then, Ra-

man spectroscopy was conducted with a Micro-Raman/

Photoluminescence System (Renishaw, model 3000). An

argon ion laser beam with a 633-nm wavelength with a

power of 5mWwas used in theRaman spectroscopy tests.

The Raman spectroscope was calibrated and checked

using a standard silicon sample before and after recording

the Raman spectra from the Teflon samples.
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A Wyko NT 3300 optical profiler was used to mea-

sure the roughness parameter, Ra, and the bearing ratio,

tp, of the samples. Each measurement was made over a

nominal area of 62 lm� 81 lm and the measurements

were made at 20 locations of each sample. The mean
values of the roughness parameter and the bearing ratio

are listed in Table 1 with their corresponding standard

deviations.

The nanoindentation tests were conducted by using a

Hysitron nanomechanical test system with a Berkovich

diamond indenter. Oliver and Pharr�s method [6] was

adopted in the present study to determine the hardness.

The Hysitron nanomechanical test system had an atomic
force microscopy mode, which allowed us to image the

impression after each nanoindentation test. The inden-

tation loading and unloading rates were the same at 150

lN/s. The separation between two adjacent testing

points was 60 lm, which was sufficiently large that each

indentation test could be treated as an individual event.

The range of indentation loads was set from 0.2 to 9.9

mN for both the Teflon and Sn–Pd samples, which
yielded indentation contact depths ranging from about

10 to about 450 nm for the Teflon samples and from

about 5 to about 1500 nm for the Sn–Pd samples. Before

and after the tests, the nanoindentation system was

calibrated by using a standard sample of fused quartz.
4. Results and discussion

4.1. Surface morphology and residual surface stresses

Fig. 3 shows typical surface morphologies for the

Teflon samples, while Fig. 4 illustrates typical surface

morphologies for the Sn–Pb samples. The measured

roughness means with standard deviations are listed in
Table 1

Experimental and calculation results

Sn–Pb alloys

With 3 lm
alumina

With 1 lm
alumina

With 0.05 l
alumina

Ra (nm) 237� 73 122� 24 97� 21

Vp (nm) 129� 38 73� 14 55� 11

Vp=Ra 0.54 0.60 0.57

h� (nm) 101 144 227

H0 (MPa) 221 215 191

Mean: 209

c (mJ/m2) 7.7 14.4 9.5

Mean: 10.5

F (J/m2) 14.72 8.75 5.90

hc (nm) 137 27 6

ec (J/m2) 7.36 4.37 2.94

f (J/m2) 12.43 7.37 4.97

ec=ðVpH0Þ 0.26 0.28 0.28

Mean: 0.27
Table 1. As mentioned by Johnson [30], a less common

but statistically more meaningful measure of average

roughness is the standard deviation, r, of the height

distribution. The relationship between the roughness

and the standard deviation depends on the nature of a
rough surface, for instance, r ¼ Ra

ffiffiffiffiffiffiffiffi
p=2

p
for a normal

distribution of heights. When a probability function is

used to describe the height distribution, the bearing ratio

represents its cumulative probability function. From the

directly measured bearing ratio, we calculate the average

peak volume per unit of nominal surface area, Vp and

tabulate the results in Table 1. In general, the higher the

value of the roughness, the larger the value of Vp is, as
indicated in Table 1. Theoretically, if the probability

function of surface heights is available, we are able to

calculate the value of Vp. For example, if surface heights

follow a normal distribution, the average peak volume

per unit of nominal surface area, Vp, is calculated by

Vp ¼
Z 0

�1

1ffiffiffiffiffiffi
2p

p
r

Z x

�1
exp

��
� y2

2r2

�
dy
�
dx

¼ 0:3989r ¼ 0:5Ra: ð17Þ

The experimental data listed in Table 1 show that, for

the Teflon samples, the ratio of Vp=Ra is almost exactly

0.5, thereby indicating that the heights follow the nor-

mal distribution. For the Sn–Pd samples, however, the
ratios of Vp=Ra are 0.54, 0.60 and 0.57 for the samples

polished with 3, 1 and 0.05 lm alumina, respectively.

The deviation from 0.5 implies that the heights do not

exactly follow the normal distribution in the Sn–Pd

samples, as indicated in Fig. 5.

Fig. 6 shows the Raman spectra of the Teflon samples

after mechanically being polished with 9 lm, 3 lm and

0.3 lm alumina respectively, and then annealed at 130 �C
for 60 minutes. Raman spectroscopy was used to detect

the potential surface stresses [58]. Compared with the
Teflon polymers

m With 9 lm
alumina

With 3 lm
alumina

With 0.3 lm
alumina

482� 70 397� 64 293� 90

241� 35 197� 32 147� 44

0.50 0.50 0.50

203 19 18

24 41 44

Mean: 36

8.0 8.9 11.5

Mean: 9.5

4.16 2.40 1.90

144 181 109

2.08 1.19 0.94

3.50 2.01 1.59

0.35 0.15 0.15

Mean: 0.22



Fig. 3. In situ AFM surface 3D morphologies (10 lm� 10 lm) of Teflon samples mechanically polished with (a) with 0.3 lm alumina, (b) 3 lm
alumina, and (c) 9 lm alumina.

Fig. 4. In situ AFM surface 3D morphologies (5 lm� 5 lm) of Sn–Pb samples mechanically polished with (a) with 0.05 lm alumina, (b) 1 lm
alumina, and (c) 3 lm alumina.
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standard Raman spectra, we did not find any changes.

The experimental results indicate no detectable residual

stresses at the surfaces. Fig. 7 illustrates the experi-
mental results of the X-ray diffraction sin2 w measure-

ments on the Sn–Pd sample. The measured residual

stresses are 18.2� 23.1, )4.2� 6.5, and 10.0� 11.1 MPa



Fig. 5. The height distributions in (a) a Teflon sample and (b) a Sn–Pd

sample, where the solid curves are plotted according to the normal

distribution. The heights of the Teflon sample follow the normal dis-

tribution, whereas the heights of the Sn–Pd sample deviate to some

extent from the normal distribution.

Fig. 6. The Raman spectra of the Teflon samples after mechanically

being polished with 9, 3, and 0.3 lm alumina, respectively, and then

annealed at 130 �C for 60 min.

Fig. 7. The experimental results of the X-ray diffraction sin2 w mea-

surements on the Sn–Pd samples after being polished with 0.05, 1, and

3 lm alumina, respectively, and then annealed at 150 �C for 60 min.
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in the Sn–Pb samples mechanically polished with 0.05, 1,

and 3 lm alumina, respectively. The stress measure-

ments indicate that the average values are small and
change from positive to negative and the standard de-
viations are large.

4.2. Hardness

Fig. 8 illustrates hardness as a function of the in-

dentation depth for all the indentation depths, while the

inset figures show the hardness as a function of the re-

ciprocal indentation depth for depths less than 150 nm.
There are three parameters in Eq. (6a) or Eq. (6b) that

have to be extracted from the relationship between

hardness and indentation depth. In the fitting process,

we find that the three parameters cannot be uniquely

determined by only minimizing the fitting error. Since

the surface term predominates when the depths are

shallower than a critical value, we fit the value of F first

with shallow depths less than 150 nm, which is shown in
the inset figures. The plots in the insets reveal that there

is a linear relationship between the hardness and the

reciprocal indentation depth for a given surface rough-

ness if the depths are shallower than 150 nm. From the

linear regression of the experimental data, we determine

the value of F for each given surface roughness and

tabulate the results in Table 1. The results indicate that,

for a given material, the rougher the surface, the higher
the value of F is. With the evaluated F , we then use Eq.

(6) to determine the values of H0 and h� for each sample.

Since the value of the macrohardness, H0, should be the

same for a given material and independent of the surface

roughness, the mean of three initial fitted values of H0 is

used to fit the value of h�. In Table 1, we tabulate all the

fitting results of F , H0, and h�. The results indicate that,
for the Sn–Pd samples, the rougher the surface, the
lower the value of h� is. This may be attributed to the

surface step effects on nanoindentation [10,59]. There

may be more surface steps on a rougher surface and thus

the dislocation emission is much easier.



Fig. 8. The hardness as a function of the indentation depth (a) for the

Teflon samples and (b) for the Sb–Pd samples, where the inset figures

show the hardness as a linear function of the reciprocal indentation

depth for shallow depths less than 150 nm. From the linear regression,

we determine the value of F and then extract the values of H0 and h� by
fitting experimental data of the entire range of depths with Eq. (6).

Fig. 9. The pull-off force as a linear function of the residual contact

area (a) for the Teflon samples and (b) for the Sb–Pd samples.
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4.3. Adhesion

We plot the pull-out force extracted from the unload-

ing curves as a function of the residual contact area in

Fig. 9. The plots illustrate that the pull-out force is ap-

proximately a linear function of the residual contact area.

The linear relationship between the pull-out force and the

residual contact area is independent of the initial surface
roughness, as shown in Fig. 9. This is because the plastic

deformation makes the final surface morphology of the

contact area almost the same. As described above, the

original peaks of the asperities plastically flow down to fill

up the original valleys, which leads to the residual contact

area becoming independent of the original surface

roughness. With Eq. (16), we estimate the work of adhe-

sion with the equilibrium separation of 0.5 nm and list the
result in Table 1 as well. The mean values of the work of

adhesion are 10.5 and 9.5 mJ/m2 for the Sn–Pb and the

Teflon samples, respectively,which are consistentwith the

data reported in the literature [60].
4.4. Surface plastic work

After determining the values of F and fs, we calculate
the surface plastic work per project area, ec, from Eq.

(13) and list the calculated results in Table 1. As indi-

cated in Table 1, the surface plastic work per project

area is two or three orders higher in magnitude than the

corresponding work of adhesion, thereby yielding an

apparent surface stress two or three orders higher in
magnitude than the thermodynamic surface stress, as

indicated in Table 1. We may calculate the value of ec
with the use of Eq. (15) if the plastic flow pressure, p0, is
available. The plastic flow pressure can be estimated by

the macrohardness, H0. For example, Johnson [30] es-

timated it to be p0 � 0:39H0. The surface plastic work

per project area, ec, depends on the roughness, but the

plastic flow pressure and the hardness at the infinite
indentation depth are both independent of the rough-

ness. As a direct consequence, the ratio of p0=H0 ¼
ec=ðVpH0Þ should be almost a constant regardless of

the surface roughness. Table 1 indicates the ratios of

ec=ðVpH0Þ for the tested samples. As expected, the ratios

of ec=ðVpH0Þ are 0.27 and 0.22 for the Sn–Pd and the

Teflon samples, respectively. The results indicate that

the ratios for both materials are almost the same, which
is expected from the theoretical model.

4.5. Critical depth, hc

Zhang and Xu [26] proposed a critical contact depth,

hc,
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hc ¼
ðA�Þ2

h� � 2A� for the dislocation theory of plasticity

if h� > 2A�; ð18aÞ

hc ¼
ðA�Þ2

h�
for the molecular theory of plasticity;

ð18bÞ
where A� ¼ gf =H0. The surface term predominates in

the region of h < hc, while the bulk term predominates
in h > hc. However, for the dislocation theory of plas-

ticity, the surface term will predominate over the entire

region of the indentation depth if h� 6 2A�. We calcu-

late the critical depth for the tested samples. As indi-

cated in Table 1, the critical depths are 144, 181, and

109 nm for the Teflon polymers polished with 9, 3, and

0.3 lm alumina, respectively, thereby indicating that

the rougher the indented surface, the deeper the critical
depth is. The results are consistent with the fitting

process that the value of F is first determined at a

shallow depth region where the surface effect predom-

inates. However, the critical depths are 137, 27, and 6

nm for the Sn–Pd samples polished with 3, 1, and 0.05

lm alumina, respectively. The fitting results for the Sn–

Pd sample polished with 3 lm alumina are approxi-

mately consistent with the fitting process, whereas the
other two values are too small to be consistent with the

fitting process when the value of F is extracted from

fitting the data of depths less than 150 nm. As men-

tioned above, the fitting is not unique in the determi-

nation of the three parameters from the experimental

data. Nevertheless, the consistent experimental results

from the four samples verify the bearing ratio model,

showing that plastic deformation at indented surfaces
creates apparent surface stresses with very high values

in magnitude in comparison with the thermodynamic

surface stresses.
4.6. Fully plastic deformation of asperities

Zhao et al. [61] studied the elastic–plastic contact of

rough surfaces. Their results indicate that for an asperity
with a radius of Rasp, only elastic deformation occurs if

x < x1, where x denotes the local interference and

x1 ¼ ð3pKH=4EÞ2Rasp is the critical interference at the

point of initial yielding, E is Young�s modulus of the

rough surface, H is the hardness of the material, and K
is a dimensionless constant, which is the parameter,

ec=ðVpH0Þ, listed in Table 1. Elastic–plastic deformation

occurs if x1 < x < x2 and fully plastic deformation
occurs if x > x2, where x2 P 54x1. It is expected that

the bearing ratio model is appropriate when fully plastic

deformation occurs. The average Young�s moduli of the

experimental samples were estimated with a Poisson

ratio of 0.3 from the unloading curves of the nanoin-
dentation tests to be ESn–Pb � 36:35� 10:17 GPa and

ETeflon � 1:591� 0:682 GPa, respectively. The hardness

and the value of ec=ðVpH0Þ, as listed in Table 1, are

HSn–Pb � 0:209 GPa and K ¼ ec=ðVpH0Þ ¼ 0:27 for the

Sn–Pb alloys and HTeflon � 0:036 GPa and K ¼
ec=ðVpH0Þ ¼ 0:22 for the Teflon samples. Thus, we have

54x1 ¼ 0:000719Rasp for the Sn–Pb alloys and

54x1 ¼ 0:00743Rasp for the Teflon samples. The range of

indentation loads was set from 0.2 to 9.9 mN in the tests

on both the Teflon and Sn–Pd samples, which yielded

indentation contact depths ranging from about 10 to

about 450 nm for the Teflon samples and from about 5

to about 1500 nm for the Sn–Pd samples. To meet the
criterion for fully plastic deformation, the values of Rasp

should be smaller than 60,565 and 2,086,231 nm for the

Teflon and Sn–Pd samples, respectively. The surface

morphology measurements show that the values of Rasp

are about 873 and 1317 nm for the Teflon and Sn–Pd

samples, respectively, thereby indicating that the crite-

rion for fully plastic deformation is satisfied and asper-

ities on the indented rough surfaces of the Sn–Pb and
Teflon samples must fully deform plastically.
5. Concluding remarks

The proposed bearing ratio model is able to assess

quantitatively the degree of the plastic work done on a

rough indented surface. The designed nanoindentation
tests on both crystalline and amorphous materials with

different surface roughnesses verify the proposed bear-

ing ratio model. The experimental and theoretical results

indicate that the rougher the indented surface is, the

more the energy dissipated during the plastic deforma-

tion and the more significant the ISE will be. The ap-

parent surface stress extracted from the nanoindentation

tests is about two or three orders higher in magnitude
than the thermodynamic surface energy of the same

material. This apparent surface stress mainly represents

the dissipation energy per project area due to the plastic

deformation occurring at the indented surface.
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